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Abstract. In t h s  paper we present a scalable pointer analysis for em- 
bedded applications that is able to distinguish between instances of re- 
cursively defined data structures and elements of arrays. The main con- 
tribution consists of an efficient yet precise algorithm that can handle 
multithreaded programs. We first perform an inexpensive flow-sensicive 
analysis of each function in the program that generates semantic eqiia- 
t.ions describing the eifect of the function on the memory graph. These 
equations bear numerical constraints that describe nonuniform points-to 
relationships. W-e then iteratively solve these equations in order to o b  
tain an abstract storage graph that describes the shape of daca structures 
at every point of che program for all possible thread interleak-ings. We 
bring experimental evidence that this approach is tractable arid precise 
for real-size embedded applications. 

1 Introduction 

The difficulty of statically computing precise poinrs-to information is a major 
obstacle to the automatic verification of real programs. Recent successes in the 
verification of safecy-critical software [BCCT03] have been enabled in part be- 
cause this class of programs makes a very restricted use of pointer manipillations 
and dy-mmic memory allocation. There are numerous pointer-intensive applica- 
tions that are not safety--critical yet still require a high level of dependability like 
unmanned spacecrafc flight control: flight data visualization or on-board neta-ork 
management for example. These progams commonly use arrays and linked lists 
t.0 stcore pointers to semaphores; message queues and data packets (for interpro- 
cess conmunication), partitions of Lhe memory: etc. Esisting scalable pointer 
analyses [Ste96,FFSASS:DasOO,HTOl] are uniform, i.e. they do not distinguish 
between elements of arrays or components of reciirsive data strucwres and are 
therefore of little help for the veri6cacion of these programs. It is the purpose of 
this paper to address the problem of inferring noniiniform points-to information 
for embedded programs. 

Few nonuniform pointer analyses have been studied in the literature. The first 
one has been designed by Deutsch [Deu53.Deu94] and applies to programs with 
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explicit data type annotations. We first redesigned Deutsch's model in order to 
analyze languages like C in which the type information cannot be trusted to infer 
she shape of a data structure [Ven96:'i;en99]. However both approaches rely on 
a costly representation of the aliasing as an equivalence relation between access 
paths: which makes t h s  kind of analysis inapplicable to programs larger than a 
few thousand lines. We therefore designed a new semantic model [Ven02] that is 
both more compact and more expressive than the one based on access paths. The 
interest of the latter approch lies in the representation of dynamic memory allc- 
cation using numerical timestamps, which turns pointer analysis into the classical 
problem of computing the numerical invariants of an arithmetic program. In the 
case of a sequential program, various optimization techniques can be applied that 
break down the complesity of analyzing large arithmetic programs as described 
in [BCCi02,BCC'03]. In the case of multithreaded arithmetic programs how- 
ever; there are no proven techniques that can cope with shared data and thread 
interleaving efficiently and precisely. This is a major drawback knowing that 
most embedded applications are multishreaded. 

In this paper we present a pointer analysis based on the semantic model 
of [VenO2] that can infer nonuniform points-to relations for multithreaded pru- 
grams. From our experience with the verification of red  embedded applications 
we observed that collections of objects are usually manipulated in a very reg- 
ular way using simple loops. Furthermore, these loops are generally controlled 
by local scalar variables like an array index or a pointer to  the elements of a 
list. It is quite uncommon to  find global array indices or lists that are modi- 
fied across function calls. 'Therefore, the information flowing through this local 
control structure is sufficient in praaice to describe exact!y che layout of ar- 
rays and the shape of linked data structures. We call it the svrfuce structure 
of a program. In the new model proposed here we first perform a flow-sensiiive 
analysis of the surface structure that automatically discovers numerical loop in- 
variants relating array positions ana timestamps of dynamically created objects. 
We use these invariants to generate semantic eqiiatiaris t.hat model the effect of 
the function on the memory. We then iteratively solve the system made of the 
semancic equations generated from all functions in the program. -4 similar ap- 
proach has been applied in [\\TO?: for improving the precision of inclusion-based 
flowinsensitive pointer anaiyses. Our model can be seen as a natural e.?rtension 
to hdersen ' s  algorithm jAnd94j in which variabies are indexed by integers de- 
noting array positions and timestamps. and inclusion constraints bear numerical 
relations between the indices of variables. We will carry on the presentation of 
the analysis with this andogy in mind. 

The paper is organized as follows. In Sect. 2 we define the base semantic 
model and the surface structure of a C program. The semantics is based on 
t imestaqx to identi+- instances of dynamically allocated objects. Section 3 de- 
scribes the abstract interpretation of the surface structure and the inference of 
numerical invariants. In Sect. 4 we show how to generate nonuniform inclusion 
constraints from the numerical relationships obtained by the analysis of the sur- 
face structure. The iterative resolution of these constraints provides us with a 
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giobal approximation of the memory graph. We describe the impiementation of 
an  analyzer for the full C language in Sect. 5 and give some experimental re- 
sults from the analysis of a real device driver. We end the paper with conciuding 
remarks and future work. 

2 Base Semantic Model 

In [VenOl‘] we have introduced a semantic model that uniquely identifLes instances 
of dynamically allocated objects by using timestamps of the form (A,, . . . , A,) 
where the A, are counters associated to  each loop enclosing a memory allocation 
command. Consider for example the following piece of code: 

Example 1 

f o r ( i  = 0; i < IO; ii+) 
f o r ( j  = 0; j < 3 ;  j++) 

a C i l [ j l . p t r  = malloc ( . . . ) ;  

In that model we would mB%Xertlie coiiple (i, f) % a~timestamFfor distinguish- 
ing between calk to the rnalloc command. In this paper we use a simplified model 
which folds all nested loop counters into one. In the previous example, this would 
result into considering the timestamp 3 i  f j .  This amounts to having one global 
counter A that is incremented whenever the execution crosses a loop and is reset 
to 0 whenever the execution exits an outermost loop. Vlihile both modeb are 
equivalent in uniquely identifglng dynamicalIy allocated memory, the loss of in- 
formation about nested loop counters may lead to imprecisions when timestamps 
are represented by abstract numerical lattices [Kar76,CH7S,GraSl,MinOl], This 
is not an issue in embedded applications since almost all loops have constant 
iteration bounds and arrays are traversed in a regular way as in the example 
above. This type of loop invariants can be eEciently and exactly computed by 
using the reduced product [CC79] of the lattices of linear equalities [Kar76] and 
intervals [CC76] for example. 

Because C allows the programmer to change the layout of a structured block 
via aggressive type casts, using symbolic data selectors like in [T;en02] for repre- 
senting points-to relations is quite challenging (see [CR99] for a detailed discus- 
sion of type casting in C). In OIII case this would make the analysis overly compii- 
cated since we also hai,-e to cznaze numericai cocstr:tints that re!aie timestamps 
and positions within blocks. &-e choose a simple solution that consists of using a 
homogeneous byte-based representation of positions within memory blocks. This 
means that a field in a structure is identified by its byte oifset from the beginning 
of the structure. As a consequence we must take architecture-dependent charac- 
teristics like alignment and padding into account. Fortunately, most C front-ends 
provide this information for free. In such a model an edge in the points-to graph 
has the form (a: o) D (a’: 0’) where a. a’ are addresses of blocks in memory and 
0: o‘ are byte oifsets within these blocks. 

Our purpose is to abstract a C program into a system of points-to equations 
expressed by inciusion constrainzs simiiariy to Andersen‘s analysis [rZnd94]. Since 
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Stmt ::= n = c ( e  E w 
I n = m + o  
I n = m x o  
I p = & x  
I p = q + n  

P = "9 
*P = 9 
p = mslloc() 
while  (a < n) do ~ 1 , .  . ; sn end 

Fig. 1. Syntax of che core pointer language 

we want to express nonuniform aliasing relationships, we need to assign position 
and timestamp indices to semantic variables and relate them by using numerical 
constraints. For example, we would like to generate an inclusion constraint for 
the piece of code of Example 1 that looks like: 

*(&at (i x s t oprr)) 2 malloct where i = t A t E [O; 291 

where s is the size of the structure contained in the twedimensional array. 
opt= is the oEset of the field p t r  in that structure and t is the timestamp 
of the memory allocation statement. In order to infer this kind of constraint 
we must first perform a Aom-sensitive analysis over a relational numerical lat- 
tice 1E(ar76,CH~S,GraSl,MinOZ] that computes invariants relating loop counters, 
array indices and timestamps. The main difference horn [Ven02] comes horn the 
fact that  we generate inclus,io.n_Cpns~raints without any prior knowledge of the 
iayout of objects in the heap. in this case it is not obvious what to do with the 
follom-ing piece of code: 

Example 2 

f o r ( i  = 0; i < 10; i++) C 
p = p->next; 

i 

The rest of 5is section wd! be des.oced to  defiriing a cmcrete senanxic mode! 
thax will allow us to  handle this situation simply and precisely. 

We base our semantic specification on a small languase that captures the 
core pointer arithmetic of C at the funexion level. The treatment of interproce- 
dura! mechanisms is postponed until Sect. 4 where we will detail xhe generation 
of inclusion constraints. We call surface variuble a variable which has a scalar 
type! either integer or pointer: and which does not have its address taken. The 
synt&y of the language is defined in Fig. 1, where we denote by p, q: r pointer- 
valued surface variables, by m: n: o integer-valued surface variables, and by x: y: z 
all other variables. W-e assume that the variable on the left handside of an assign- 
ment operation does not appear on the right handside. This will facilitate the 
design of the numerical abstract interpretation in Sect. 3. It is always possible 
to  rewrite the program in order to satisfy this assumption. Note that in order 
to keep the presentation simple, we focus on fundamental arithmetic operations 
and loops. -411 other constructs can be analyzed along the same lines. We use 



this language to model the computations thai occur iocaily wichin the body of 
a C function, excluding calls t o  orher fimctions. A program P in this IanpuaFe 
is just a sequence of statements describing the pointer manipuiations performed 
by a function. We provide P with a small-step operational semantics given by a 
transition system (E, -+) defined as follows. 

We first need some notations. ‘VVe assume that each statement of P is assigned 
a unique label !. If ! is the label of a statement. we denote by next!!) the label of 
the next statement of P to be executed in the natural execution order. If ! is the 
label of a loop we denote by top(!) the predicate that is true iff the statement 
at e is an outermost loop. A state of C is a tuple (X,M,c,,!) where X is an 
integer denoting the global loop coonter used for timestamping, hl is a ineiiloiy 
graph, e is an environment and ! is the label of the next statement to cxecute. 
A memory graph is a collection of points-to edges (a! o) D (a’, 0’) where a; a’ are 
addresses and o,o‘ are integers representing byte offsets. An address is either 
the location of a global wriabie Six or a dynamically allocated block blke(t), 
where is the location of the allocation statement and t is a timestamp. We use 
a special address null t o  represent the NULL pointer value in C. The mapping 
defined by a memory graph is functional, i.e. there is at  most one outcoming 
edge for each memory location (a: 0). We denote by M(a: 0)  the target location 
of the edge originating from the location (a; o) if it exists or (null, 0) otherwise. 
We denote by M[(a, 0 )  D (a’, o’)] the memory graph M which hm been updated 
with the edge (a, 0 )  D (a’; 0’). 

We split down each pointer variable p into two variables p a  and pa that re- 
spectively denote the address of the block and the offset within this block to 
which p points. An environment e maps variables n7po to integers and variables 
p a  to addresses. \\-e denote by e[. - ‘u] the environment c, in which the variable 
u has been assigned the value ’u. Finally, we denote by R a special element of 
C representing the error state. The transition relation -+ of the operational se- 
mantics is then defined in Fig. 2. An initial state in this operational semantics 
assigns arbitrary integer values to surface integer variables and the null memory 
location to surface pointer variables. This amounts to  considering integer vari- 
ables as uninitialized and pointers initialized to NULL. For consistency the initial 
value of X should be 0. In our framework an initial state describes the memory 
configuration at the entry of the C function that is modeled by the program P. 

The transition rule for loop exits requires some explanations. The global loop 
counter X is incremerted at the end of each loop iteration and decremented when- 
ever the execution steps om of a nested loop. Wlether the g!oba! loop counter 
is decremented or leh unchanged at loop exit has no effect on the uniqueness 
of timestamps. However decrementation is required in order to preserve linear 
relationships between X and byte oEsets during the traversal of multidimensional 
arrays. Consider the two nested loops of Example 1. We keep the previous n e  
tations and we denote by 0 the byce ofiset within a on the lefthand side of 
the assignment. Then, the relation between 0 and the loop counters is given by 
0 = 3 x s x i +- s x j + If we use the decrementation rule at  loop exit: the 
global loop counter value is given by X = 3 x i ?- j, hence 0 = s x X + optr. 

- 



(A, M, g, e : p = malloct))  -+ (A, kf, _oba - blke(,\),p, - 01, next(!)) 
R if g(p,) = null (A, 12.1, e, e : *p = q) -+ 

( O , M ,  ,o! next(!)) if g(m) 2 g(n) and top(!) 
(A - 1, M ,  g: next(!)) otherwise (A, hf, g, e : while (m < n) do . . . end) - 

(A, M; g:! : end) - (A -+ I: hf, e ,  e' : while (. . .) do . . . e : end) 

Fig. 2. Operational semantics of the core poinr,er language 

Without this rule X would be equal t o  4 x i f j and the relationship between 
the global loop counter and 0 would be lost, thereb?. preventinz the infwrnce 
of a nonuniform points-to relation.. 

This operational semantics is similar to the one described in [\-en021 with 
a simplified timestamping. We need t o  instrument the semantics by adding an 
insermediate layer between the environment and the memory that keeps track of 
all memori; accesses. \\-henever a location is retrieved from the memory, we use 
a timestamp to tag it with a unique name that we call an anchor, and we keep 
the binding becween this anchor and the actual memory location in a separate 
structure A called the anchorage. The local environment ,o now maps the address 
component of a surface variabie p a  either to an address that explicitly appears 
in the body of a C !3xiction or to an anchor. We call this refined semantics the 
surfme seman,t:cs. More formally, the surface semantics (Xsz -s) of a prograc 
P is defined as follows. A emended smte of 1, is a tuple (X, -4: Ad; e: e )  where 
(A ,  M. 0; e)  E 2 and A is an anchorage. An anchor refejt) denotes the value 
returned by the execution of a memory read command e : p = *q at program 
point .! on time t .  The anchorage maps an anchor refe(t) to an acr;ual memory 
location (2, e ) .  If (c,  0)  is a location stored io the enviroLxrenr; p ,  a ~ a y  eiIher 
be an address or an anchor. We define the resolution function get, which maps 
(a, o) to the corresponding memory location as follows: 

(null, 0) 

(a: 0 )  

if a is an anchor and A(u)  = (null, 0) 

if a is an address a 
(a: o + 0') if a is an anchor and A ( a , )  = (a, 0') 

If p is a surface pointer and Q is an environment, we denote by getA,,(p) the 
memory location get_l(y(p,), ,o(po)). The transition relation -s of the surface 
semantics is then defined in Fig. 3. The error state in this semantics is also 



Fig. 3. Surface semantics of the core pointer language 

denoted by 0. -4n init.ial state in the surface semantics is simply an initial state 
in the base semantics with an empty anchorage. TVe denote by- I the set of all 
initial states. 

We are interested in the collectzng semantics [Cou8l] of a program P, that 
is the set C = {i zs s j i E I }  of all states reachable from any initial state I .  We 
define the .surface structure S of P as  follows: 

s={(X,&e) I3k I3 -4 :  (x,.4,M,Q:e) EC) 

r?Ln element (/Lo,[) is called a svrfuce con$gurution. The program P models 
the pointer manipulations performed by a single C function. Our purpose is 60 

compute a global approxhation of the memory for a whole C program by first 
performing an abstract interpretation of the surface structure of each function 
in the program. The design of this abstract interpretation is straightforward 
because the surface structure is independent from the data stored in the heap and 
does not interfere with other threads. We will then generate inclusion constraints 
from the results of the analysis of the surface structure that will provide us with 
a global approximation of the memory and the anchorage structure as well. 

3 

We describe the analysis of the surface structure within the framework of Ab- 
sciact Iiiterprecatioii [CC;T,CCTS,C~:r;81,CC92]. We desne a= abstract nnviron- 
merit by a pa- (vi, d) s fol!ows: 

- The component vg is an abstract numerical relation belonging to  a given 
numerical lattice V t  [KarTG,C”iS,GraSl,MinOl] that we leave as a param- 
eter of our analysis. The abstract relation vd is a collection of numerical 
constraints between all integer valued variables n. po of the program and a 
special variable -1 denoting the w!ue cf the global loop counter. 

Abstract Interpretation of the Surface Structure 

- The component ;ri maps every variabie po to a set of abstract addresses. 

An abstract address is eicher the address of a globai variabie Bx, a dynamically 
allocated biock biki(p;j oi an anchor ref{;pL:j, where p: is a absnact numerical 



Fig. 4. -4bstract surface seman-iics of atomic statements 

relation between the loop counter variable A and a special timestamp variable 
denoted by T .  We assume that for each set of abstract addresses, there is at most 
one abstract address blk!(pj) or ref:(pd) per program location e .  Therefore; the 
set E: of all abstract environments is isomorphic to the product JJIzEI L'd  of the 
numerical lattice over a fixed family I. We provide EL with the structure of a 
!actice by lihing all operations of l i d  to Eo pointwise. 

(dj of an abstract, numerical relation is a set of variable 
assignments E that satisfy the numerical consuaints expressed by vy . If z1 ~ . . . z, 
are nmsricai  variabies and 2'1, . . . ~ v, are integer d u e s ,  we denote by v; (zl H 
V I : .  . . , zn a,) the predicate that is true iff there is an assignment E E -/vi (d) 
such that ~(z,) = v, for all 1 5 i 5 n. The denotation -/E: (d, d) of an abstracr; 
environment is the set of all pairs {A. _o) where A E IN and Q is an environment 
of the surface semantics. such that: 

The denotation 

An abstract surface configuration of the program is a family (vj] 7 i j ) e E ~ o c ( p )  of 
abstract environments, one for each location e in the program P considered. We 
provide the set of all abstract surface codgurations with a lattice structure by 
pointwise extension of operations from E$. The denotation ~ ( v ! ,  T ~ ) ~ ~ L ~ ~ ( ~ )  of 
ans abstract configuration is the set of all surface configurations (A, Q,  e) such 
that (A, co) E T ~ Y  (vi, ire). 

Following the methodology of ilbstract Interpretation, we must now d e h e  
the abstract semantics of the language. We first have to define some operations 
on the abstract numerical lattice Va. If vfi E VG and V is a set of variables: 
we denote by vy 8 V the abstract numerical relation in which all information 
about variables in V has been lost, and by ivrJv the relation that only keeps 

* r  



ip2ormation for variables in 1’. If S is a system of arbitrary nuniericd coli- 
straints, we denote by v y  S an abstract nimerical relation representing all 
variable assignments that are in ihe denotation of u: and that-, are also solutions 
of 5’. If 21 is a variable, we denote by us[, := 2’ f c] the operation that con- 
sists of adding the increment c to the value of n. The implementation of these 
operations depends on the abscract numerical lattice considered, and we refer 
the reader LO the corresponding papers for more details about the underlying 
algorithms [CC76,Kar76,CH78 ,Gra91 JvIinOl]. Vie assign an abstract semantics 
[s]g : E2 - E3 to  each atomic statement s of the language as defined in Fig. 4. 

If (vr, d) is an abstract environment, we define the result (v?: 5:) of the 
operation inc,I($J; d,) as follows: 

We define the operation dec.h(v:, 7ii) (resp. reset.,i(vi, +)) similarly by substi- 
tuting the operation A := -4 - 1 (resp. A := 0) to -4 := A + 1. The abstract 
semantics of a program is then given by the least solution of a recursive system 
of semantic equations 

where Fe is defined as follows: 

- If k‘ = next((‘) and e’ is the location of an atomic statement s, then 

- If e’’ : while (UI < n) do l! : s; . .  . ;e’ : end, then 

- If L? = next([’) and L?’ : uhile (m < n) do . . . end, then 

We apply classical fixpoint algorithms based upon iteration sequences with widen- 
ing and narrowing [Cout?l;CC92] in order to obtain an upper approximation s$ 
of the least fixpoint of the system. 

T h e o r e m  1. Si 2s a sound approxamatzon of the surface semantacs, 2.e. S & 

For example. consider the following program in our core pointer language that 
511s in an array a of pointers xt!: ncn-!y al!ocated bloc!is 



Example 3. 

1: 
2: 
3 :  
a:  
5: 
6: 
7 :  
8 :  

n = 0 ;  
vhile (n < 10) C 

q = &a; 
p = q + n ;  
r = malloc0; 
*p = r; 
n = n + l ;  

1 
i f  we use the lattice of convex poiyhedra [CEB] as the numericd lattice V i ,  
then the abstract environmenx obtained after analysis of the surface structure 
ar program point 6 is: 

assuming that pointers occupy four bytes in memory. 

4 Nonuniform Inclusion Constraints 

We now use the analysis of the surface structure to build a global appro‘xima- 
tion of t h e  memory graph. For this purpose we use an extension of -4ndersen’s 
inclusion consTiaints [_llndS$ enriched with numerical indices that allow us to 
describe nonuniform points-to relations. The syntax of a nonuniform inclusion 
constraint is the following: 

where t. t’; o are specid index variables denoxing timestamp and o k e t  values 
and X, y are set variables. We assume that we are provided with a countable 
collection of set variables. The second component vj of a nonuniform constraint 
is a system of numerical relationships between the index variables appearing in 
the constraint. 

The semantics of a system of nouniform constraints is based upon an abstract 
memory graph. An abstract memory graph M’ is a set of abstract points-to 
relations 

(a(t ,  0)  D a’(t’, o’), vi(t, t:: 0; 0’))  

where a: a’ are addresses and t: t’: 0, 0’ are special index variables representing 
the timestamps and offsecs associaced to each address. The abstract numerical 



relation vi expresses numerical constraints between these index variabies. The 
set iLig of abstract memory graphs can be provided with the structure of a 
lattice by point.wise extension of che corresponding lattice operations over V i .  
The denotacion -/,,,l~(Mi) of an abssract memory- graph is the set of memory 
graphs such that the oEsets on the points-to edges satisfy the constraints of the 
corresponding abstract edges. A valuation V-‘ of set variables is a set of mappings 

( ~ ( t )  ++ a(t’) + o,vc(t: t’: 0 ) )  

where a is an address and t ,  t‘, o are numerical index variables. The set lid of 
all valuations can similarly be provided with the struccure of a lattice. Xote that 
in the case of the address of a global &-x, the associated timestamp variable does 
not have any meaning and is not related by any numerical constraint. We use a 
uniform nocation in order to keep the semantic definitions simple. A valuation 
can be seen as an abstraction of the anchorage structure defined in Sect. 2. The 
semantics [C]? : M $  x Val‘ - hf! x Vu@ of a nonuniform inclusion conszraint 
C is defined as follows: 

where we have freely renamed the index variables whenever it was necessary to 
avoid name clashes. A solution of a system S of nonuniform set constraints is a 
couple ( M j :  V-:) which is invariant under the application of [C]g for any C E S. 

We are interested in the least solution of a system S of conuniforrn set con- 
straints. We can obtain an approsimation of the least solution of S by computing 
the limit of the abstract iteration sequence with widening ( M i .  defined 
as follows: 

E-here ([C9‘);7Es denotes the application of all conssraints of S in an arbi- 
trary order, and V is the product of the widening operators on M ?  and V-uld. 
This provides us with an effective algorithm for computing an approximate s e  
lution of the system, which is similar to that defined by Andersen [AndSd]. 
The main difference is the use of a widening operator to enfmce convergence 
because some abstract numerical lattices have infiniLely increasing chains of 
elements[CC’i6,CH76,MinOl]. Once a post-fkpoint has been reached using this 



algorithm, we can further r e h e  the result by using a decreasing iteration se- 
quence n-ith narrowing defined in the same way. We observed from our esperi- 
ments that an iteration sequence with narrowing is always required in order to 
obcain precise ranges for the timestamp and offset variables. 

We now have to show how to extract nonuniform inclusion constraints from 
the abstract interpretation of the surface semantics. Let SI be the abstract sur- 
face semantics of a program P obtained from the analy-sis described in the previ- 
ous section. We assign a unique pair of set variables (Le, Re) to each statement 
e : *q = r or e : q = +r of P, denoting respectively the points-to sets of the 
lefthand and righthand sides of the assignment. Let gr = (vi> T ~ )  be an abstract 
environment, p a pointer variable of P and X a set variable. We denote by 
C.?,, (8) the collection of nonuniform constraints defined as follows: 

- If &x E d ( p a ) :  then 

( X ( t )  2 s i x  -k 0 ,  [ v ~  @ {t  = A: o = po}]t,,) E Cx,,(p’) 

- If blk{(pj) E d ( p a ) ,  then 

(.Y(t) 2 blke(t‘) +- 0 ,  [v‘ fi pi 6 {T = t’; t = 11.0 = p,)Jt,t,,o) E Cx,,($) 

- If ref;($) E d i p a ) ,  then 

( X ( t )  2 &(t’) + 0, IJ n p’ E {T = t’, t = A:  o = po}J~,v,,) E C,Y;~(QR) 

Xow, if e : *p = q is a memory write ssatement of P and $ is the abstract 
environment of S1 at e, we generate the constrairtts: 

CL&) u C7?+{P”) u {(*&(t) 2 ae(t’;; T,2 9 {t  = t’})} 

Similarly, for a memory read statement t ; *p = q we generate t,he constraints: 

~ L < , , ( Q ’ )  u C ~ ~ . ~ ( Q ’ )  u T(~:e(t) 2 *Re(t’),  vu s {t  = t’))} 

We denote by S p  the system of all conssraints generated in this way for the prc- 
gram P. Let (Mi2 V:) be an approsirnation of the least solution of Sp obtained 
by an abstract iteracion sequence m described prel-iousiy. The abscract memory 
g a p h  M i  is a sound global approximation of the memory graph at every point. 
of the program: 

Theorem 2 .  For all state (A, A: M ,  Q, e) of the collecting semantics C of P, we 
have M E Y - , ~ :  (Mi). 
The pointer analysis problem of [VenO2] has thus been reduced to the simpler and 
more tractable problem of solving a system of nonuniform inclusion constraints. 

We finish this formal description with a brief description of the constraint 
generation for function calls. We associate a special set variable F;(f) to the 
i-th formal parameter of each function f of a C program. We denote by &(f) 
the variable corresponding to the return value of f. Now consider a function 



call l : p = f (pl: . . . ! p2). -4ssuming that we are provided with a collection 
X: . . ~ X,, of set vwiables describing the sets of addresses that may flow 
through the return value and the parameters p,  pl ,  . . . ~ pn of the function call: 
we generate the following points-to equations: 

(?I (f) 2 Xl, Tv: ) 

(?*if) 2 x n ;  1 v1) 

. . .  
- r (X 2 Fo((f):Tvcj 

In other words, function calls are treated unzjonly: there are no numerical con- 
straints on the index variables. This is not a problem in practice, since nonuni- 
form behaviours usually take place at the function level in embedded applica- 
tions. We do not detail the analysis of computed calls; which can be easily derived 
from the semantics of the memory read operation p = iq. 

We now illustrate the generation of equations. Consider the small program 
of Example 3 that 611s in an array of pointers. The equations generated after the 
surface anaiysis are the follom5ng: 

(*&(t) 2 R6(t’); {t = t’, 0 5 t < 1 0 ) )  
(&(t) _> &a t 0, (0 5 o 5 4 x t ) )  i (7&(t) 2 blk5(t’) t 0, {t = t’; 0 = 0; 0 _< t < 10)) 

Aher solving these constraints by using an abstract iteration sequence with 
widening, we obtain the following abstract memory graph: 

{ ( ( & - a , o ) D ( b l k ~ ( t ) , o ‘ ) , { o = 4 ~  t ,o ’=O,O < t <  10))) 

which describes the exact shape of the memory althrough the execution of the 
program. 

5 Experimental Evaluation 

We have implemented the static analysis described in this paper for the full 
C language. The analyzer itself consists of 9,000 lines of SML/N.J escluding 
the front-end. We have interfaced the analyzer with the ckit \HOh\I] C iront- 
end which is also written in SML. We currently use the reduced product of 
the lattice of linear equalities [Kar76] and the lattice of intervals [CC76] for 
expressing numerical constraints. The analyzer first translates the C program 
into an intermediate language in which all eqxessions and statements have been 
broken down using a 3-address format. We then perform a dependency analysis 
which is used to eliminate all arithmetic operations that are not ifwolved in 
pointer manipulations. This substantially shrinks down the size of the code to 
azalyze. lV%ole structure assigEmen6 has not been described in this paper and 
deserves some attention. There are two possible ways of handling this construct? 
either by expanding the assignment into a collection of individual assignments t o  
the fie!& of the structure or by zna!yzing the assi-pnent, as a.n a tomic  operation. 



The former is made difiicult by union types and structure-breaking type casts. 
We chose the latter approach, which requires a straightforward extension of 
nonuniform constraints in order to copy a packet of pointers at once. 

We have applied the analyzer to a red  piece of software: an on-board link 
controller. The application contains about 25,000 lines of unprocessed C code. 
It is a pointer intensive program with plenty of loop constructs operating on 
multidimensional arrays of StrucxCuTes. It is quite representative of an average 
size embedded program, which is the main target of our analysis. Very large 
programs like those described in pB04] are quite unusual. Our analysis is quite 
elficient. It takes E10 seconds to parse the files, construct the abstract surface 
semantics and generate the nonuniform inclusion constraints on a laptop with 
a 900hfhz Intel Pentium and 1Gh of R A M  running L,inux under VmWare. The 
resolution of these constraints only takes 21  seconds. 

The results show that the analysis does discover nonuniform points-to rela- 
tions. In particular: bidimensional arrays of distinct semaphores, arrays of func- 
tions and tables of predlocated memory blocks for dedicated memory manage- 
ment are exactly described. Surprisingly enough, the analysis uncovered a real 
bug in this application. Whiie we were reviewing the results of the analysis we 
noticed that for some array array2 of dynamically allocated semaphores, there 
was no linear relationship betwren the  oifset and the timestamps in the points-To 
relations. The nonuniform points-to equations gave us instantly the location in 
the program where the array was initialized. The initialization code looks like: 

f o r  (i = c;  i i 25; i -rtj  
for ( j  = 0; j < 8 ;  j++) { 
array1 [il [jl = semcreate 0 ; 
array2CjI = semcreate 0; 

} 

The first array is properly initialized whereas the second one is reinitialized 
multiple times, causing a memory leak. It should be noticed that the analysis 
sucessfiilly inferred a nonuniform points-to relation for the bidimensional array 
of Semaphores. This bug was presenr; from the very first version of the program 
and h'?s never been detected during the 1s months the sofcware has been under- 
going tescing so far. This is an interesting application of this static analysis as a 
sophisticated typechecker for collections of pointers. 

6 Conclusion 

We have presented a pointer analysis that is able to infer nonuniform points-to 
relationships without the cost of existing flow-sensitive analyses [Deu94,Ven02]. 
The originality of our work is that it conciliates two approaches to pointer anal- 
ysis; abstract interpretation and constraint-based analysis, which are often op- 
posed one to each other. Although we could have expressed the whole analy- 
sis within the framework of Abstract Interpretation [CC95j, we think that a 



constrain-based presentation is more compact ana more intuidve for both un- 
derstanding and implementing the analysis. Vie have shomn on a representative 
case study thac our approach is tractable and achieves the expected level of pre- 
cision. Unexpectedly, this analysis has been able to detect a subtle initialization 
bug in a real application. It now remains to perform more extensive empirical 
studies and investigate the use of the analysis in a real verification tool. 
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